The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 04, 1983
Filed:
Dec. 06, 1979
Bronislaw Seeman, Meudon, FR;
Schlumberger Technology Corporation, New York, NY (US);
Abstract
The disclosure is directed to an apparatus and method for determining the velocity of acoustic wave energy propagating information surrounding a borehole. In accordance with one form of the apparatus, a transmitter is positioned in the borehole and periodically establishes acoustic wave energy in the surrounding formations. The acoustic wave energy is received at a plurality of spaced locations in the borehole and a plurality of signals are derived which are respectively representative of the wave energy received at the plurality of spaced locations in the borehole. Means are provided, for correcting a first portion of the signal from one of the receiver locations with first portions of signals from the other receiver locations. The time references of the first portion of the signals from the other locations are determined from an assumed velocity in conjunction with the time reference of the first portion of the signal from the one receiver location and the distance to each of the other receivers. The correlating is performed for a number of different assumed velocities to obtain a resultant first provisional velocity. In particular, the assumed velocity which yields substantially the maximum or best correlation is selected as the first provisional velocity. Means are also provided for correlating a second portion of the signal from said one of the receiver locations with second portions of the signals from the other receiver locations. Again, the second portions of the signals from the other receiver locations are determined using an assumed velocity, and the correlating of second portions is performed for a number of different assumed velocities to obtain a resultant second provisional velocity. An output velocity is then generated as a function of the first, second, and other similarly generated velocities. An output velocity for the compressional component of the acoustic wave energy and/or an output velocity for the shear component of the acoustic wave energy can be obtained using the disclosed technique.