The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jul. 14, 1981

Filed:

Nov. 13, 1979
Applicant:
Inventors:

Robert A Frosch, , US;

Richard J Stirn, La Canada, CA (US);

Yea-Chuan M Yeh, Santa Monica, CA (US);

Assignee:

Other;

Attorneys:
Primary Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
136255 ; 136258 ; 136262 ; 357 15 ; 357 30 ;
Abstract

A Schottky barrier solar cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range, is deposited on the substrate. But first a passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium on a substrate of low-cost conductive material. Then the polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 microns, and preferably considerably more. It serves as a base layer on which a thin layer of gallium arsenide is vapor-epitaxially grown to a selected thickness. Then, a thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more than about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer. In another embodiment, the recrystallized germanium layer serves as the substrate for a Schottky barrier solar cell with more than one active semiconductor layer. The techniques of forming the oxide layer are also applicable in forming an oxide layer between a metal layer and a semiconductor material which together form a Schottky barrier junction in any solar cell.


Find Patent Forward Citations

Loading…