The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 16, 1980
Filed:
Feb. 22, 1979
Wesley B Argo, St. Louis, MO (US);
Burton B Crocker, St. Louis, MO (US);
Charles C Sisler, St. Louis, MO (US);
Monsanto Company, St. Louis, MO (US);
Abstract
A method and apparatus for removal of particulates from gas streams with high collection efficiency on even submicron particulates. The apparatus includes a grounded fiber bed of 50 to 1000 micron average diameter fibers packed to a bed voidage of at least 90%, an electrostatic or ionizing field means upstream of the fiber bed to place an electrical charge on the particulates, and irrigation means for the fiber bed, and optionally the grounded electrodes of the electrostatic means as well, to flush collected particulates from the fiber bed and optionally from the grounded electrodes. The method is suitable for separation of any particulates but is particularly advantageous for separation of insoluble solid particulates from gas streams at high bed velocities of from 6 to 15 or more feet per second (i.e., 1.8 to 4.6 or more meters per second). The preferred fiber bed is of 100 to 500 micron diameter, and advantageously 100 to 250 micron diameter, glass fibers. In operation, particulates are charged in the electrostatic means and the charged particulates are collected in the fiber bed where the electrical charge is dissipated through the irrigating liquid/particulates mixture so that no significant space charge effect is allowed to develop in the fibers of the fiber bed and re-entrainment of particulates is avoided.