The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 15, 1980
Filed:
Oct. 24, 1978
Claude L Bertin, South Burlington, VT (US);
John Bula, Essex, VT (US);
Larry C Martin, Tucson, AZ (US);
Thomas A Williams, Reston, VA (US);
International Business Machines Corporation, Armonk, NY (US);
Abstract
Use of a residual charge bleed-off diode connected to the gate of an FET device in a Read Only Storage (ROS) is disclosed. The ROS is personalized by cutting selected gate leads in an array of FETs with a laser beam. Experience has shown that static electric charges on the lead due to handling prior to cutting become isolated at the gate after the gate lead is cut, producing an unpredictable conduction state for the FET instead of a solid off-state as desired. By providing a bleed-off diode which remains connected to the FET gate after the cut is made, the charges are allowed to leak away from those FETs whose gates have been cut while, at the same time, preventing the voltage of the FET gate from floating. The diode is oriented so as to offer a high impedance to current flowing from the gate node when the gate is biased for FET conduction. This minimizes the effect of the diode on circuit speed when the gate remains connected with the balance of the read only storage circuitry. If the gate and diode have been selectively severed from the balance of the read only storage circuitry, in the course of programming the storage, any residual charge on the gate is conducted through the diode by virtue of its reverse bias leakage or forward biased conduction state, depending upon the polarity of the residual charge on the gate.