The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 06, 1979
Filed:
Nov. 11, 1976
Douglas P Boyd, Woodside, CA (US);
Board of Trustees of The Lelane Standard Junior University, Stanford, CA (US);
Abstract
A fan-shaped beam or a fan array of individual beamlets of penetrating radiation, such as X-ray or .gamma.-ray radiation, is directed through a planar slice of the body to be analyzed to a position sensitive detector. The fan beam and the detector are caused to move in a rectilinear or nearly rectilinear fashion so that the individual beamlets or rays of penetrating radiation scan across the body and each detector records a parallel ray shadowgraph at a different angle of rotation (scan angle) with respect to the body and covering a range of scan angles less than 180.degree. and typically approximately 90.degree.. The recorded shadowgraphic data is then reconstructed into a 3-D tomograph of the body using a method of successive approximations. The resultant scanner may be used to analyze planes of the body parallel to the major axis thereof such as saggital or coronal as well as transaxial planes. In a preferred embodiment, the position sensitive detector includes detector elements arranged for detecting penetrating radiation passing through the body in a number of divergent planes diverging from the source. 3-D tomographs are reconstructed from the corresponding divergent plane shadowgraphic data. An advantage in use of the scanner of the present invention is that faster scan times are achieved due to the rectilinear or nearly rectilinear translation of the scanner which enables a reduction of blurring of the resultant tomographs due to biological motion. A further advantage is that multiple planes may be scanned simultaneously.