The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 18, 1978
Filed:
Jan. 21, 1977
Norman H Sweed, Princeton Jct., NJ (US);
John P DeLuca, New Providence, NJ (US);
Kenneth Kamholz, Cherry Hill, NJ (US);
Exxon Research & Engineering Co., Linden, NJ (US);
Abstract
A one-piece, integral, high strength, combined heat exchanger-reactor comprising a monolithic honeycomb structure wherein the channels thereof are divided into two or more groups; group one carrying one fluid and group two carrying another fluid which differs from the first in composition and/or temperature and/or pressure and/or direction of flow, the main design feature of the combined heat exchanger-reactor (CHER) being that group one channels extend outward parallel to the channel axis and perpendicular to the cross-section of the honeycomb and each channel of this group one being in thermal contact through common walls with channels of group two while each channel of group one is separated from other channels of group one by the intervening voids formed by the presence of the channels of group two. The extended ends of the channels of group one extending from one or both ends of the honeycomb are manifolded at one or both ends so as to form a separation of the entrances and/or exits of the extended group one channels from the recessed group two channels thereby permitting the entry and/or exit of fluid in group one channels while preventing entry of the same fluid into the group two channels thereby permitting the independent passage of different fluids through the different channel one and channel two systems, the common wall which exists between channels of the different groups allowing heat conduction from the fluid in one group of channels to the fluid in the other group of channels. In this manner, very precise concentration and/or temperature control may be maintained over the fluids and/or catalysts which exist in the different channel groups, enabling one to perform complex reactions, either self-induced or catalytic, in the reactor with greatly enhanced yields and/or selectively due to the refined temperature and/or concentration control which is made possible by the present invention.