The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 06, 1978

Filed:

Apr. 13, 1976
Applicant:
Inventors:

Arthur H Hoffmann, Monroeville, PA (US);

Dale I Gorden, North Versailles, PA (US);

Lee A Kilgore, Export, PA (US);

Assignee:

Westinghouse Electric Corp., Pittsburgh, PA (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
F02N / ;
U.S. Cl.
CPC ...
290 31 ; 290 46 ; 290 39 ; 290 49 ; 290 52 ;
Abstract

Method and apparatus for accelerating a large inertia load from rest to a predetermined speed of rotation by means of a synchronous dynamoelectric machine. A synchronous dynamoelectric machine, such as a turbine generator, which is mechanically coupled to a gas turbine prime mover, is started synchronously to bring the gas turbine up to a speed which exceeds its stall speed under load. The rotor field winding of the synchronous dynamoelectric machine is connected to receive direct current excitation from a rotatable rectifier assembly of a brushless exciter. During starting, a quadrature axis winding disposed around the stator of the brushless exciter is energized by single phase alternating current. Alternating current excitation is induced by transformer action within the rotor armature winding of the exciter and is applied to the rotor field winding after being rectified by the rotatable rectifier assembly. The transformer action operates independently of the rotation of the rotor member of the synchronous dynamoelectric machine so that the brushless exciter develops direct current field excitation for starting purposes when the rotor is at rest. Polyphase alternating current excitation is applied to the synchronous dynamoelectric machine stator winding to establish a dynamic magnetic field which rotates at a speed proportional to the frequency of the applied excitation. Interaction of the static magnetic field of the rotor and the rotating stator field produces the mechanical turning force. The frequency of the synchronously applied stator excitation is increased from substantially zero cycles per second to a higher frequency until the rotor member has accelerated synchronously to the desired speed of rotation.


Find Patent Forward Citations

Loading…