The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 27, 1977
Filed:
Jul. 07, 1975
Robert Wong, Granville, OH (US);
Homer G Hill, Newark, OH (US);
Owens-Corning Fiberglas Corporation, Toledo, OH (US);
Abstract
An improved method of coating fibers and particularly glass fibers with a solution of materials containing a reversible shear thinning gel producing agent which causes the coating to be transformed into a shear thinning gel under predetermined conditions. The predetermined conditions may be brought about after the coated fibers are brought together into touching engagement in a package, or may be caused to occur before the coated fibers are brought together in touching engagement in the package. The fibers can be removed from the package and still retain a coating on the fibers, since the shearing action of the fibers through the gel converts the gel to a liquid which adheres to the fibers as they are being pulled through the gel. The predetermined conditions may involve a change in temperature, or a change in concentration of solids. The change in temperature will usually be a cooling of the coating materials to a temperature below the gelation point, and the change in concentration will usually be an evaporation of solvent to form at least a skin of gel on the surface of the coating materials. The change in temperature technique can be used to increase the amount of solids that is applied to the fibers. The uncoated fibers, however, are preferably drawn through the gel to subject the reversible shear thinning gel to shear which causes the materials to flow around and adhere to the fibers, following which the coating reverts to a gel.