The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 11, 1977
Filed:
Nov. 03, 1975
Emmett L Hudspeth, Austin, TX (US);
Philip C Richardson, Austin, TX (US);
John L Neathery, Jr, Austin, TX (US);
Jerald P Dykstra, Austin, TX (US);
Allen D Boger, Jr, Austin, TX (US);
William B Sims, Jr, Austin, TX (US);
Glenn E Hunt, Austin, TX (US);
Tony M Quisenberry, Austin, TX (US);
Amsco/Medical Electronics, Inc., Austin, TX (US);
Abstract
Medical data including temperature, respiration rate and pulse rate are measured and stored in an acquisition unit incorporating a circulating register for storing data covering many patients. An analog temperature signal is converted into binary coded decimal for visual presentation on a display of the acquisition unit. The display data is then stored in the acquisition unit memory by actuating a RECORD switch. An analog respiration rate signal and an analog pulse rate signal are also converted into binary coded decimal for sequential display and storage in the acquisition unit memory. Medical data from external sources may similarly be stored in the acquisition unit memory. This recording procedure is repeated for any number of patients desired up to the storage limit of the acquisition memory. Data stored in the acquisition unit is then transferred into a printer unit that accesses each memory location and prints the data on a separate label for each individual patient. The printer includes a hard wired minicomputer which reads in data from the acquisition unit and compares it with identifying codes for controlling a digital printer. Medical data for each patient stored in the acquisition unit is temporarily stored in a random access memory and sequentially compared with each of a plurality of identifying codes for control of the digital printer. After all patient data in the acquisition unit has been transferred into the printer memory, a signal is generated to enable clearing of the acquisition unit memory for subsequent use thereof.