The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Nov. 30, 1976

Filed:

Sep. 29, 1975
Applicant:
Inventor:

Ole Bjorn Kohnke, Lyngby, DK;

Assignee:

Other;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G09B / ;
U.S. Cl.
CPC ...
35 17 ;
Abstract

A dummy for teaching mouth-to-mouth and mouth-to-nose resuscitation, has a head shaped to generally correspond to a human head; simulated mouth and nose openings; and a trunk connected to the head by a neck. The trunk has a hollow part simulating the human thorax. The trunk defines an air-tight, self-supporting container which simulates the human torso and lungs. The container has an oblong cross-sectional configuration at least in the zone of the thorax and is connected with the mouth and nose openings by means of a conduit simulating the human windpipe. The trunk wall is resilient at least in the zone of the thorax to undergo outwardly directed elastic deformations by the pressure of insufflated air for effecting changes in the volume of the container in response to insufflation and simulate the movement of the human thorax. The volume of the container is so chosen relative to its resilient properties that the insufflation of the same air volume to be insufflated into the lungs of a human being during correctly performed mouth-to-mouth and mouth-to-nose resuscitation generates the same pressure in the container as in the human lungs. Similarly when insufflation is terminated, the insufflated air, due to the resilient properties of the trunk wall, is forced out of the container which returns to its undeformed shape, thereby simulating the expiration and movement of the human thorax. Thus, the container wall has a resistance to insufflation through either of the openings that is comparable to a corresponding resistance of human lungs and further, the container simulates the movements of a human thorax during mouth-to-mouth and mouth-to-nose resuscitation.


Find Patent Forward Citations

Loading…