The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 07, 1976
Filed:
Jun. 11, 1974
Kurt Handrick, Essen, DT;
Anton Benning, Saarbrucken, DT;
Dietrich George, Essen, DT;
Jurgen Schlegel, Iddensen, DT;
Bergwerksverband GmbH, Essen, DT;
Abstract
Processes for the continuous production of aromatic carboxylic acids by reaction of nitric acid with an aromatic compound having an oxidizable alkyl or alkoxyalkyl substitutent which comprise mixing the aromatic compound in the form of small droplets with a large volume of dilute nitric acid having a concentration between 2 and 14% by weight of nitric acid that is maintained at a superatmospheric pressure between 15 and 80 atmospheres and at a temperature between 160.degree. and 230.degree.C, which processes comprise continuously passing a reaction mixture consisting of the aromatic compound and the dilute nitric acid through a series of at least three consecutively arranged vertical reactor column in each of which the ratio of the weight of the reaction mixture containing the dilute nitric acid to the weight of the aromatic compound is continuously maintained at at least 50:1, the nitric acid concentration in each of the reactor column being continuously maintained at an originally preselected concentration by the addition of amounts of more-concentrated nitric acid while aliquot portions of the aromatic compound based upon the number of vertical reactor columns in the series are continuously introduced into each of the reactor columns, the reaction zones each being maintained at an optimal oxidation temperature between 160 and 230.degree.C for the aromatic compound that is being oxidized, and continuously passing the reaction mixture into a final reactor column that is maintained at a higher temperature than the preceding series of reactor columns, and continuously discharging the reaction mixture containing between 10 and 20% by weight of the aromatic carboxylic acid thus produced from the final reactor column.