The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Feb. 03, 1976

Filed:

Feb. 03, 1975
Applicant:
Inventors:

Don Leslie Kendall, Richardson, TX (US);

John C Knowles, Jr, Dallas, TX (US);

Assignee:
Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
H01L / ;
U.S. Cl.
CPC ...
148187 ; 29580 ; 148175 ; 156 17 ;
Abstract

The disclosure relates to the formation of very thin silicon slices, 1/10 of a mil, and the mechanical strengthening of such thin silicon slices and to the formation of electronic circuitry in such slices and the use thereof. These slices are formed, in accordance with one embodiment of the invention, by etching grooves in an n+ wafer using an orientation dependent etch and etching along the {111} plane in {110} n+ wafers. After oxide removal, the surface of the wafer opposite the grooves is epitaxially coated with n-type silicon and the original grooves are then further etched by an electrolytic etch or by a concentration dependent etch which will remove only the n+ material, thereby leaving the thin wafer with a honeycomb-like supporting structure with struts in the shapes of parallelograms, diamonds and the like. The thin slice can be used to purify electron beams since, for given energies, only ions passing in the direction of the lattice structure or along the channel will completely pass through the slice, the other ions being stopped by collisions with the atoms of the silicon slice. The slice can also be used as a channel multiplier since light impinging on the slice will generate electrons which will pass between struts or honeycomb-like members and gradually pick up additional electrons by secondary emission. These electrons are made to fall on a phosphor screen or the like whereby light is again generated, but in multiplied fashion.


Find Patent Forward Citations

Loading…