The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 18, 2025
Filed:
Sep. 14, 2020
Ocean Tunicell As, Blomsterdalen, NO;
Paul Gatenholm, Riner, VA (US);
Erdem Karabulut, Oslo, NO;
Ocean Tunicell AS, Blomsterdalen, NO;
Abstract
The present invention relates to preparation and use of biocompatible and electrically conductive 3D hydrogels comprising nanocellulose fibrils, such as disintegrated bacterial nanocellulose, plant derived nanocellulose, tunicate derived nanocellulose, or algae derived nanocellulose, together with carbon nanotubes or graphene oxide, as a biocompatible and conductive 3D hydrogel for diagnostics and intervention to mimic or restore tissue and organ function. Biocompatible conductive 3D hydrogels described in this invention can be extruded, casted or injected. The 3D hydrogels described in this invention are cohesive 3D structures and provide electrical conductivity in wet form. 3D hydrogels described in this invention can be further crosslinked using divalent ions such as Calcium ions which improve mechanical stability. Such crosslinking can take place in an animal or human body in a physiological environment after injection into the tissue. 3D hydrogels are biocompatible and show preferable mechanical properties and electrical conductivity through printed lines (4.10S cm). The 3D hydrogels prepared by this invention are suited as bioassays to screen drugs against neurodegenerative diseases such as Alzheimer's and Parkinson's, study brain function, and/or be used to link the human brain with electronic and/or communication devices. They can also be injected to replace neural tissue or stimulate guiding of neural cells. They can also be used to inject into the heart and stimulate the heart by using electrical signaling or to repair myocardial infarction.