The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Aug. 12, 2025

Filed:

Apr. 15, 2022
Applicant:

University of Maryland, College Park, College Park, MD (US);

Inventors:

Xiaoming He, Bethesda, MD (US);

Weijie Li, Shanghai, CN;

Bin Jiang, College Park, MD (US);

Assignee:

University of Maryland, College Park, College Park, MD (US);

Attorney:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
A01N 1/02 (2006.01); A01N 1/125 (2025.01); A01N 1/147 (2025.01); A01N 1/162 (2025.01); C12N 5/074 (2010.01);
U.S. Cl.
CPC ...
A01N 1/162 (2025.01); A01N 1/125 (2025.01); A01N 1/147 (2025.01); C12N 5/0696 (2013.01);
Abstract

Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to their widespread use. However, contemporary methods for hiPSC cryopreservation are associated with both limited cell survival and high concentration of toxic cryoprotectants and/or serum. The latter may cause spontaneous differentiation and introduce xenogeneic factors, which may compromise the quality of hiPSCs. Here, sand from nature is discovered to be capable of seeding ice above −10° C., which enables cryopreservation of hiPSCs with no serum, minimized cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by the pluripotency marker expression, cell cycle analysis, and capability of differentiation into the three germ layers. This unique sand-mediated cryopreservation method may greatly facilitate the convenient and ready availability of high-quality hiPSCs and probably many other types of cells/tissues for the emerging cell-based translational medicine.


Find Patent Forward Citations

Loading…