The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 14, 2025
Filed:
Oct. 19, 2021
Dalian University of Technology, Liaoning, CN;
Jianjian Shen, Liaoning, CN;
Yue Wang, Liaoning, CN;
Chuntian Cheng, Liaoning, CN;
Binbin Zhou, Liaoning, CN;
Congtong Zhang, Liaoning, CN;
Lin Hu, Liaoning, CN;
DALIAN UNIVERSITY OF TECHNOLOGY, Liaoning, CN;
Abstract
The present invention belongs to the field of power system operations and provides a method for quantifying the flexibility demand and coordinating optimization of a hydro-wind-solar multi-energy complementary system. Firstly, the flexibility demand quantification method considering the uncertainty of wind and solar power output is constructed, and the wind and solar power output interval is divided by using quantile points to generate a set of output scenarios, and then the flexibility demand under each scenario is calculated. Based on the quantitative index of flexibility demand, an optimal operation model of hydro-wind-solar complementary system considering the minimum expectation of system flexibility deficiency is constructed to realize the optimal calculation of hydro-wind-solar complementary. By utilizing an actual wind-hydro complementary system of the Yunnan Power Grid, the model is validated for different new energy access ratios. The results show that the method of the present invention can give a complementary operation and scheduling scheme for multiple types of power sources under different conditions, effectively meet the flexibility demand of the system, reduce the abandoned power and improve the level of clean energy integration.