The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 31, 2024
Filed:
Nov. 27, 2019
Friedrich-schiller-universitaet Jena, Jena, DE;
Ulrich Sigmar Schubert, Jena, DE;
Martin Hager, Dornburg-Camburg, DE;
FRIEDRICH-SCHILLER-UNIVERSITAET JENA, Jena, DE;
Abstract
A redox flow battery for storing electrical energy is described, comprising a reaction cell with two electrode chambers for catholyte and anolyte, each of which is connected to at least one liquid reservoir, the electrode chambers being separated by a membrane, being equipped with electrodes, and each being filled with electrolyte solutions which contain redox-active components dissolved or dispersed in an aqueous electrolyte solvent, as well as conducting salts dissolved therein and possibly further additives. A second embodiment relates to a redox flow battery for storing electrical energy, comprising a reaction cell with an electrode chamber for an electrolyte solution, which is connected to at least one liquid reservoir, the electrode chamber being equipped with a cathode and an anode, and being filled with electrolyte solution which contains redox-active components dissolved or dispersed in an aqueous electrolyte solvent, as well as conductive salts dissolved therein and possibly further additives. The redox flow cells are characterized in that the at least one liquid reservois is an underground storage means in which temperatures of at least 30° C. prevail, in that the concentration of the salts dissolved in the electrolyte solutions is at least 10% by weight, and in that the catholyte or the electrolyte solution contains selected redox-active and temperature-stable components. In the first embodiment, the anolyte contains a water-soluble redox-active component and in the second embodiment, the anolyte or the electrolyte solution contains a zinc salt.