The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 08, 2024
Filed:
Jul. 31, 2020
Max-planck-gesellschaft Zur Foerderung Der Wissenschaften E. V., Munich, DE;
Abstract
A method for creating multiple sequences of diffusion-weighted magnetic resonance (MR) images of an object is described, wherein each of said sequences of MR images represents the same series of contiguous cross-sectional slices covering a volume of the object. The method comprises (a) providing multiple sequences of sets of image raw data being collected with the use of at least one radiofrequency receiver coil of a magnetic resonance imaging device, wherein each set of image raw data includes data samples being generated with a combined diffusion-weighted spin-echo and single-shot stimulated-echo sequence with diffusion-encoding gradients, (b) subjecting a sequence of sets of image raw data generated with diffusion-encoding gradients of zero strength or lower strength to a regularized nonlinear inverse reconstruction process to provide a sequence of coil sensitivities and MR images with no or lower diffusion weighting, and (c) subjecting all sequences of sets of image raw data with diffusion-encoding gradients of zero or lower strength as well as of higher strength to a regularized linear inverse reconstruction process, to provide a sequence of MR images with no or lower diffusion weighting and a sequence of MR images with higher strength, each of the MR images representing one of the cross-sectional slices and being created by using the sensitivity of the at least one receiver coil determined in step (b) for the same cross-sectional slice and in dependency on a difference between a current image content estimation and an image content estimation of a neighboring cross-sectional slice. Furthermore, an MRI device for creating a sequence of diffusion-weighted MR images of an object is described.