The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 17, 2024
Filed:
May. 29, 2020
Leica Biosystems Imaging Inc., Vista, CA (US);
Walter Georgescu, Vista, CA (US);
Kiran Saligrama, Vista, CA (US);
Allen Olson, Vista, CA (US);
Girish Mallya Udupi, Vista, CA (US);
Bruno Oliveira, Vista, CA (US);
Leica Biosystems Imaging Inc., Vista, CA (US);
Abstract
A CNN is applied to a histological image to identify areas of interest. The CNN classifies pixels according to relevance classes including one or more classes indicating levels of interest and at least one class indicating lack of interest. The CNN is trained on a training data set including data which has recorded how pathologists have interacted with visualizations of histological images. In the trained CNN, the in-terest-based pixel classification is used to generate a segmentation mask that defines areas of interest. The mask can be used to indicate where in an image clinically relevant features may be located. Further, it can be used to guide variable data compression of the histological image. Moreover, it can be used to control loading of image data in either a client-server model or within a memory cache policy. Furthermore, a histological image of a tissue sample of a tissue type that has been treated with a test compound is image processed in order to detect areas where toxic reactions to the test compound may have occurred. An autoencoder is trained with a training data set comprising histological images of tissue samples which are of the given tissue type, but which have not been treated with the test compound. The trained autoencoder is applied to detect tissue areas by their deviation from the normal variation seen in that tissue type as learnt by the training process, and so build up a toxicity map of the image. The toxicity map can then be used to direct a toxicological pathologist to examine the areas identified by the autoencoder as lying outside the normal range of heterogeneity for the tissue type. This makes the pathologist's review quicker and more reliable. The toxicity map can also be overlayed with the segmentation mask indicating areas of interest. When an area of interest and an area identified as lying outside the normal range of heterogeneity for the tissue type, and increased confidence score is applied to the overlapping area.