The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 10, 2024
Filed:
Mar. 21, 2022
Between Lizenz Gmbh, Stuttgart, DE;
Thomas Häring, Stuttgart, DE;
Jochen Kerres, Stuttgart, DE;
Abstract
The invention relates to:—anion exchange blend membranes consisting the following blend components:—a halomethylated polymer (a polymer with —(CH2)x—CH2—Hal groups, Hal=F, Cl, Br, I; x=0-12), which is quaternised with a tertiary or a n-alkylated/n-arylated imidazole, an N-alkylated/N-arylated benzimidazole or an N-alkylated/N-arylated pyrazol to form an anion exchanger polymer. - an inert matrix polymer in which the anion exchange polymer is embedded and which is optionally covalently crosslinked with the halomethylated precursor of the anion exchanger polymer,—a polyethyleneglycol with epoxide or halomethyl terminal groups which are anchored by reacting with N—H-groups of the base matrix polymer using convalent cross-linking—optionally an acidic polymer which forms with the anion-exchanger polymer an ionic cross-linking (negative bound ions of the acidic polymer forming ionic cross-linking positions relative to the positive cations of the anion-exchanger polymer)—optionally a sulphonated polymer (polymer with sulphate groups —SO2Me, Me=any cation), which forms with the halomethyl groups of the halomethylated polymer convalent crosslinking bridges with sulfinate S-alkylation. The invention also relates to a method for producing said membranes, to the use of said membranes in electrochemical energy conversion processes (e.g. Redox-flow batteries and other flow batteries, PEM-electrolyses, membrane fuel cells), and in other membrane methods (e.g. electrodialysis, diffusion dialysis).