The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 13, 2024
Filed:
Jul. 02, 2020
Mitsubishi Electric Research Laboratories, Inc., Cambridge, MA (US);
Toshiaki Koike-Akino, Belmont, MA (US);
Ye Wang, Andover, MA (US);
Andac Demir, Boston, MA (US);
Deniz Erdogmus, Boston, MA (US);
Mitsubishi Electric Research Laboratories, Inc., Cambridge, MA (US);
Abstract
A system for automated construction of an artificial neural network architecture is provided. The system includes a set of interfaces and data links configured to receive and send signals, wherein the signals include datasets of training data, validation data and testing data, wherein the signals include a set of random number factors in multi-dimensional signals X, wherein part of the random number factors are associated with task labels Y to identify, and nuisance variations S. The system further includes a set of memory banks to store a set of reconfigurable deep neural network (DNN) blocks, hyperparameters, trainable variables, intermediate neuron signals, and temporary computation values including forward-pass signals and backward-pass gradients. The system further includes at least one processor, in connection with the interface and the memory banks, configured to submit the signals and the datasets into the reconfigurable DNN blocks, wherein the at least one processor is configured to execute a Bayesian graph exploration using the Bayes-Ball algorithm to reconfigure the DNN blocks such that redundant links are pruned to be compact by modifying the hyperparameters in the memory banks. The system realizes nuisance-robust variational Bayesian inference to be transferable to new datasets in semi-supervised settings.