The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 04, 2024
Filed:
Jun. 30, 2022
Alex Usenko, Lake St. Louis, MO (US);
Anthony Caruso, Overland Park, KS (US);
Steven Bellinger, Manhattan, KS (US);
Alex Usenko, Lake St. Louis, MO (US);
Anthony Caruso, Overland Park, KS (US);
Steven Bellinger, Manhattan, KS (US);
THE CURATORS OF THE UNIVERSITY OF MISSOURI, Columbia, MO (US);
Abstract
A method of producing a four-layer silicon diode, including selecting a first silicon wafer, wherein said first silicon wafer is CZ-grown B-doped with <100> orientation, a resistivity of less than 0.01 Ohm-cm, and an oxygen content of greater than 10 ppma, and then selecting a second silicon wafer, wherein said second silicon wafer is CZ-grown P-doped with <100> orientation, a resistivity of less than 0.005 Ohm-cm, and an oxygen content of greater than 10 ppma, followed by cleaning the respective first and second silicon wafers. The wafers are then HF treated to yield respective first and second cleaned wafers, the first cleaned wafer is positioned into a first furnace and the second cleaned wafer is positioned into a second furnace, wherein the first and second furnaces are not unitary. Next is annealing the respective first and second cleaned wafers in a reducing atmosphere to yield respective first and second respective out-diffused gradient wafers, followed by bonding together respective first and second heat-treated wafers to yield a mated and/or bonded four-layer substrate having a first heavy doped n-type layer, a second gradient doped n-type layer, a third gradient doped p-type layer, and a fourth heavy doped p-type layer.