The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 05, 2024
Filed:
Apr. 07, 2021
Arizona Board of Regents on Behalf of Arizona State University, Scottsdale, AZ (US);
Zongwei Zhou, Tempe, AZ (US);
Vatsal Sodha, San Jose, CA (US);
Jiaxuan Pang, Tempe, AZ (US);
Jianming Liang, Scottsdale, AZ (US);
Arizona Board of Regents on behalf of Arizona State University, Scottsdale, AZ (US);
Abstract
Described herein are means for generation of self-taught generic models, named Models Genesis, without requiring any manual labeling, in which the Models Genesis are then utilized for the processing of medical imaging. For instance, an exemplary system is specially configured for learning general-purpose image representations by recovering original sub-volumes of 3D input images from transformed 3D images. Such a system operates by cropping a sub-volume from each 3D input image; performing image transformations upon each of the sub-volumes cropped from the 3D input images to generate transformed sub-volumes; and training an encoder-decoder architecture with skip connections to learn a common image representation by restoring the original sub-volumes cropped from the 3D input images from the transformed sub-volumes generated via the image transformations. A pre-trained 3D generic model is thus provided, based on the trained encoder-decoder architecture having learned the common image representation which is capable of identifying anatomical patterns in never before seen 3D medical images having no labeling and no annotation. More importantly, the pre-trained generic models lead to improved performance in multiple target tasks, effective across diseases, organs, datasets, and modalities.