The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Mar. 05, 2024

Filed:

Mar. 29, 2022
Applicant:

Enlitic, Inc., San Francisco, CA (US);

Inventors:

Kevin Lyman, Fords, NJ (US);

Li Yao, San Francisco, CA (US);

Eric C. Poblenz, Palo Alto, CA (US);

Jordan Prosky, San Francisco, CA (US);

Ben Covington, Berkeley, CA (US);

Anthony Upton, Malvern, AU;

Assignee:

Enlitic, Inc., Fort Collins, CO (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G16H 50/20 (2018.01); A61B 5/00 (2006.01); G06F 3/0482 (2013.01); G06F 3/0484 (2022.01); G06F 9/54 (2006.01); G06F 16/245 (2019.01); G06F 18/21 (2023.01); G06F 18/2115 (2023.01); G06F 18/214 (2023.01); G06F 18/2415 (2023.01); G06F 18/40 (2023.01); G06F 21/62 (2013.01); G06N 5/04 (2023.01); G06N 5/045 (2023.01); G06N 20/00 (2019.01); G06N 20/20 (2019.01); G06Q 10/0631 (2023.01); G06Q 20/14 (2012.01); G06T 3/40 (2006.01); G06T 5/00 (2006.01); G06T 5/50 (2006.01); G06T 7/00 (2017.01); G06T 7/10 (2017.01); G06T 7/11 (2017.01); G06T 7/187 (2017.01); G06T 7/44 (2017.01); G06T 11/00 (2006.01); G06T 11/20 (2006.01); G06V 10/22 (2022.01); G06V 10/25 (2022.01); G06V 10/764 (2022.01); G06V 10/82 (2022.01); G06V 30/19 (2022.01); G06V 40/16 (2022.01); G16H 10/20 (2018.01); G16H 10/60 (2018.01); G16H 15/00 (2018.01); G16H 30/20 (2018.01); G16H 30/40 (2018.01); G16H 40/20 (2018.01); H04L 67/01 (2022.01); H04L 67/12 (2022.01); A61B 5/055 (2006.01); A61B 6/00 (2006.01); A61B 6/03 (2006.01); A61B 8/00 (2006.01); G06F 18/2111 (2023.01); G06F 18/24 (2023.01); G06F 40/295 (2020.01); G06Q 50/22 (2018.01); G06T 7/70 (2017.01); G06V 30/194 (2022.01); G16H 50/30 (2018.01); G16H 50/70 (2018.01);
U.S. Cl.
CPC ...
G06Q 10/06315 (2013.01); A61B 5/7264 (2013.01); G06F 3/0482 (2013.01); G06F 3/0484 (2013.01); G06F 9/542 (2013.01); G06F 16/245 (2019.01); G06F 18/2115 (2023.01); G06F 18/214 (2023.01); G06F 18/217 (2023.01); G06F 18/2415 (2023.01); G06F 18/41 (2023.01); G06F 21/6254 (2013.01); G06N 5/04 (2013.01); G06N 5/045 (2013.01); G06N 20/00 (2019.01); G06N 20/20 (2019.01); G06Q 20/14 (2013.01); G06T 3/40 (2013.01); G06T 5/002 (2013.01); G06T 5/008 (2013.01); G06T 5/50 (2013.01); G06T 7/0012 (2013.01); G06T 7/0014 (2013.01); G06T 7/10 (2017.01); G06T 7/11 (2017.01); G06T 7/187 (2017.01); G06T 7/44 (2017.01); G06T 7/97 (2017.01); G06T 11/001 (2013.01); G06T 11/006 (2013.01); G06T 11/206 (2013.01); G06V 10/225 (2022.01); G06V 10/25 (2022.01); G06V 10/764 (2022.01); G06V 10/82 (2022.01); G06V 30/19173 (2022.01); G06V 40/171 (2022.01); G16H 10/20 (2018.01); G16H 10/60 (2018.01); G16H 15/00 (2018.01); G16H 30/20 (2018.01); G16H 30/40 (2018.01); G16H 40/20 (2018.01); G16H 50/20 (2018.01); H04L 67/01 (2022.05); H04L 67/12 (2013.01); A61B 5/055 (2013.01); A61B 6/032 (2013.01); A61B 6/5217 (2013.01); A61B 8/4416 (2013.01); G06F 18/2111 (2023.01); G06F 18/24 (2023.01); G06F 40/295 (2020.01); G06Q 50/22 (2013.01); G06T 7/70 (2017.01); G06T 2200/24 (2013.01); G06T 2207/10048 (2013.01); G06T 2207/10081 (2013.01); G06T 2207/10088 (2013.01); G06T 2207/10116 (2013.01); G06T 2207/10132 (2013.01); G06T 2207/20076 (2013.01); G06T 2207/20081 (2013.01); G06T 2207/20084 (2013.01); G06T 2207/30004 (2013.01); G06T 2207/30008 (2013.01); G06T 2207/30016 (2013.01); G06T 2207/30061 (2013.01); G06V 30/194 (2022.01); G06V 2201/03 (2022.01); G16H 50/30 (2018.01); G16H 50/70 (2018.01);
Abstract

A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models is generated by performing a training step on a corresponding one of the plurality of training sets of the plurality of medical scans. A set of abnormality data is generated by applying a subset of a set of inference functions on a new medical scan. The subset of the set of inference functions utilize the subset of the set of sub-models, and each of the set of abnormality data is generated as output of performing one of the subset of the set of inference functions. The multi-model medical scan analysis system is further operable to generate final abnormality data that includes a global probability indicating a probability that any abnormality is present based on the set of abnormality data.


Find Patent Forward Citations

Loading…