The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 02, 2024
Filed:
Feb. 26, 2021
Advanced Neuromodulation Systems, Inc., Plano, TX (US);
Steven Boor, Plano, TX (US);
Daran DeShazo, Lewisville, TX (US);
ADVANCED NEUROMODULATION SYSTEMS, INC., Plano, TX (US);
Abstract
A neurostimulation (NS) system and method are provided. The NS system includes an array of electrodes positioned within a patient. The array of electrodes includes an active electrode. The active electrode is configured to be a cathode electrode located proximate to neural tissue of interest that is associated with a target region. The NS system includes an anode electrode and an electromagnetic interference (EMI) antenna. A control circuit is configured to control delivery of a NS therapy during a therapy delivery interval. The NS therapy is to be delivered between the anode electrode and the active electrode. The NS system develops a residual voltage between the anode electrode and the active electrode over the therapy delivery interval. A current regulator (CR) circuit is connected to the cathode electrode. The CR circuit is configured to control current flow through the cathode electrodes. During a discharge operation, the control circuit is configured to manage the CR circuit to control a discharge current flow over the discharge operation to discharge the residual voltage after therapy delivery in a manner that follows an actively emulated passive discharge (AEPD) profile. During the discharge operation, the CR circuit is connected to the inactive electrode. The CR circuit receives, as a first input, an EMI feedback signal from the EMI antenna. The CR circuit is configured to regulate the discharge current flow through the active electrode based on the EMI feedback signal, to maintain the AEPD profile over the discharge operation while in a presence of an EMI event.