The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 19, 2023
Filed:
Nov. 04, 2019
Aleyegn Technologies Llc, Saratoga, CA (US);
Giorgio Dorin, Cupertino, CA (US);
John Randall Samples, Olympia, WA (US);
Michael K. Ballard, Saratoga, CA (US);
Satish Herekar, Palo Alto, CA (US);
William Eddington, Sunnyvale, CA (US);
Perry Binder, Hailey, ID (US);
ALeyeGN Technologies LLC, Saratoga, CA (US);
Abstract
An ab externo automated laser treatment system for treating an eye in a subject, includes a non-contact laser source configured to generate a laser beam having at least one wavelength to treat the eye by directing the laser beam from a location spaced from the eye, wherein the at least one wavelength is a near-infrared wavelength in the range of about 0.5-2.2 μm, a laser scanner optically coupled to the non-contact laser source to receive the laser beam from the non-contact laser source and to scan the laser beam relative to the eye, and a processor, and memory including stored computer-readable instructions that, responsive to execution by the processor, cause the laser treatment system to direct the laser beam to a plurality of trans-scleral treatment locations to be irradiated in a predetermined treatment pattern on an external surface of the eye, wherein the trans-scleral treatment locations are 0-4 mm posterior to the corneolimbal junction, and wherein the laser beam is repetitively directed to the same irradiated trans-scleral treatment locations on the surface of the eye, and the trans-scleral treatment locations are irradiated at intervals sufficient to induce protective thermal preconditioning and therapeutic bio-stimulation of one or more of the trabecular meshwork and/or ciliary body without photocoagulation of the tissue of the eye. Trans-pupillary systems, patient interfaces, and methods are also disclosed.