The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 12, 2023
Filed:
Sep. 15, 2017
Yuan Zheng, Fremont, CA (US);
G. Wilson Miller, Charlottesville, VA (US);
William A. Tobias, Charlottesville, VA (US);
Gordon D. Cates, Gordonsville, VA (US);
David Anthony Keder, Woodbridge, VA (US);
Yuan Zheng, Fremont, CA (US);
G. Wilson Miller, Charlottesville, VA (US);
William A. Tobias, Charlottesville, VA (US);
Gordon D. Cates, Gordonsville, VA (US);
David Anthony Keder, Woodbridge, VA (US);
University of Virginia Patent Foundation, Charlottesville, VA (US);
Abstract
Polarized nuclear imaging and spectroscopy systems and methods are disclosed. In some embodiments, nuclei of a radioactive substance are polarized such that the spins of the nuclei are oriented in a specific direction, to generate a polarized radioactive tracer with anisotropic gamma ray emission. The radioactive substance is selected such that the degree of anisotropy is enhanced. A tracer is introduced into a living subject for delivery to a target area of interest in the subject. The tracer is delivered such that nuclear spin relaxation of the tracer is inhibited during transport of the tracer to the target area of interest. Gamma rays from the gamma ray emission are detected, and based on the detected gamma rays and properties associated with the anisotropic gamma ray emission, imaging data and/or spectroscopic data are obtained that are associated with the tracer in the subject. In some embodiments, a radioactive substance is delivered to a target area of interest in the subject and the nuclei of the radioactive substance are polarized following delivery of the radioactive substance to the target area of interest, such that the spins of the nuclei are oriented in a specific direction, to generate a polarized radioactive tracer with anisotropic gamma ray emission. Gamma rays are detected from the gamma ray emission, and based on the detected gamma rays and properties associated with the anisotropic gamma ray emission, imaging data and/or spectroscopic data are obtained that are associated with the tracer in the subject.