The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 05, 2023
Filed:
Dec. 28, 2020
Microsoft Technology Licensing, Llc, Redmond, WA (US);
Parsa Bonderson, Santa Barbara, CA (US);
Chetan Nayak, Santa Barbara, CA (US);
David Reilly, Sydney, AU;
Andrea Franchini Young, Goleta, CA (US);
Michael Zaletel, Berkeley, CA (US);
Microsoft Technology Licensing, LLC, Redmond, WA (US);
Abstract
Apparatus, methods, and systems are disclosed for robust scalable topological quantum computing. Quantum dots are fabricated as van der Waals heterostructures, supporting localized topological phases and non-Abelian anyons (quasiparticles). Large bandgaps provide noise immunity. Three-dot structures include an intermediate quantum dot between two computational quantum dots. With the intermediate quantum dot in an OFF state, quasiparticles at the computational quantum dots can be isolated, with long lifetimes. Alternatively, the intermediate quantum dot can be controlled to decrease the quasiparticle tunneling barrier, enabling fast computing operations. A computationally universal suite of operations includes quasiparticle initialization, braiding, fusion, and readout of fused quasiparticle states, with, optionally, transport or tunable interactions—all topologically protected. Robust qubits can be operated without error correction. Quasilinear arrays of quantum dots or qubits can be scaled arbitrarily, up to resource limits, and large-scale topological quantum computers can be realized. Extensive two-dimensional arrays can also be used.