The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Jun. 06, 2023

Filed:

Jun. 02, 2021
Applicant:

Enlitic, Inc., San Francisco, CA (US);

Inventors:

Kevin Lyman, Fords, NJ (US);

Li Yao, San Francisco, CA (US);

Eric C. Poblenz, Palo Alto, CA (US);

Jordan Prosky, San Francisco, CA (US);

Ben Covington, Berkeley, CA (US);

Anthony Upton, Malvern, AU;

Assignee:

Enlitic, Inc., Fort Collins, CO (US);

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G06Q 10/0631 (2023.01); G16H 10/60 (2018.01); G16H 30/40 (2018.01); G16H 15/00 (2018.01); G06T 5/00 (2006.01); G06T 5/50 (2006.01); G06T 7/00 (2017.01); G06T 11/00 (2006.01); G06N 5/04 (2023.01); G16H 30/20 (2018.01); G06N 20/00 (2019.01); G06F 9/54 (2006.01); G06T 7/187 (2017.01); G06T 7/11 (2017.01); G06F 3/0482 (2013.01); G06T 3/40 (2006.01); A61B 5/00 (2006.01); G16H 50/20 (2018.01); G06F 21/62 (2013.01); G06Q 20/14 (2012.01); G16H 40/20 (2018.01); G06F 3/0484 (2022.01); G16H 10/20 (2018.01); G06N 5/045 (2023.01); G06T 7/10 (2017.01); G06T 11/20 (2006.01); G06F 16/245 (2019.01); G06T 7/44 (2017.01); G06N 20/20 (2019.01); H04L 67/12 (2022.01); H04L 67/01 (2022.01); G06V 10/82 (2022.01); G06F 18/40 (2023.01); G06F 18/214 (2023.01); G06F 18/21 (2023.01); G06F 18/2115 (2023.01); G06F 18/2415 (2023.01); G06V 10/25 (2022.01); G06V 30/19 (2022.01); G06V 10/764 (2022.01); G06V 40/16 (2022.01); G06V 10/22 (2022.01); G16H 50/70 (2018.01); G06T 7/70 (2017.01); G16H 50/30 (2018.01); A61B 5/055 (2006.01); A61B 6/03 (2006.01); A61B 8/00 (2006.01); A61B 6/00 (2006.01); G06Q 50/22 (2018.01); G06F 40/295 (2020.01); G06F 18/24 (2023.01); G06F 18/2111 (2023.01); G06V 30/194 (2022.01);
U.S. Cl.
CPC ...
G06Q 10/06315 (2013.01); A61B 5/7264 (2013.01); G06F 3/0482 (2013.01); G06F 3/0484 (2013.01); G06F 9/542 (2013.01); G06F 16/245 (2019.01); G06F 18/214 (2023.01); G06F 18/217 (2023.01); G06F 18/2115 (2023.01); G06F 18/2415 (2023.01); G06F 18/41 (2023.01); G06F 21/6254 (2013.01); G06N 5/04 (2013.01); G06N 5/045 (2013.01); G06N 20/00 (2019.01); G06N 20/20 (2019.01); G06Q 20/14 (2013.01); G06T 3/40 (2013.01); G06T 5/002 (2013.01); G06T 5/008 (2013.01); G06T 5/50 (2013.01); G06T 7/0012 (2013.01); G06T 7/0014 (2013.01); G06T 7/10 (2017.01); G06T 7/11 (2017.01); G06T 7/187 (2017.01); G06T 7/44 (2017.01); G06T 7/97 (2017.01); G06T 11/001 (2013.01); G06T 11/006 (2013.01); G06T 11/206 (2013.01); G06V 10/225 (2022.01); G06V 10/25 (2022.01); G06V 10/764 (2022.01); G06V 10/82 (2022.01); G06V 30/19173 (2022.01); G06V 40/171 (2022.01); G16H 10/20 (2018.01); G16H 10/60 (2018.01); G16H 15/00 (2018.01); G16H 30/20 (2018.01); G16H 30/40 (2018.01); G16H 40/20 (2018.01); G16H 50/20 (2018.01); H04L 67/01 (2022.05); H04L 67/12 (2013.01); A61B 5/055 (2013.01); A61B 6/032 (2013.01); A61B 6/5217 (2013.01); A61B 8/4416 (2013.01); G06F 18/2111 (2023.01); G06F 18/24 (2023.01); G06F 40/295 (2020.01); G06Q 50/22 (2013.01); G06T 7/70 (2017.01); G06T 2200/24 (2013.01); G06T 2207/10048 (2013.01); G06T 2207/10081 (2013.01); G06T 2207/10088 (2013.01); G06T 2207/10116 (2013.01); G06T 2207/10132 (2013.01); G06T 2207/20076 (2013.01); G06T 2207/20081 (2013.01); G06T 2207/20084 (2013.01); G06T 2207/30004 (2013.01); G06T 2207/30008 (2013.01); G06T 2207/30016 (2013.01); G06T 2207/30061 (2013.01); G06V 30/194 (2022.01); G06V 2201/03 (2022.01); G16H 50/30 (2018.01); G16H 50/70 (2018.01);
Abstract

An intensity transform augmentation system is operable to generate a plurality of sets of augmented images by performing a set of intensity transformation functions on each of a training set of medical scans. Each of the set of intensity transformation functions are based on density properties of corresponding anatomy feature present in the training set of medical scans. A computer vision model is generated by performing a training step on the plurality of sets of augmented images, where each augmented image of a set of augmented images is assigned same output label data based on a corresponding one of the training set of medical scans. Inference data is generated by performing an inference function on a new medical scan by utilizing the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.


Find Patent Forward Citations

Loading…