The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 23, 2023
Filed:
Oct. 30, 2020
New York University, New York, NY (US);
Athanasios Koutsaftis, Brooklyn, NY (US);
Rajeev Kumar, Brooklyn, NY (US);
Pei Liu, McLean, VA (US);
Shivendra S. Panwar, Freehold, NJ (US);
New York University, New York, NY (US);
Abstract
Fifth Generation (5G) Millimeter Wave (mmWave) cellular networks are expected to serve a large set of throughput intensive, ultra-reliable, and ultra-low latency applications. To meet these stringent requirements, while minimizing the network cost, the 3Generation Partnership Project has proposed a new transport architecture, where certain functional blocks can be placed closer to the network edge. In this architecture, however, blockages and shadowing in 5G mmWave cellular networks may lead to frequent handovers (HOs) causing significant performance degradation. To meet the ultra-reliable and low-latency requirements of applications and services in an environment with frequent HOs, a Fast Inter-Base Station Ring (FIBR) architecture is described, in which base stations that are in close proximity are grouped together, interconnected by a bidirectional counter-rotating buffer insertion ring network. FIBR enables high-speed control signaling and fast-switching among BSs during HOs, while allowing the user equipment to maintain a high degree of connectivity. The FIBR architecture efficiently handles frequent HO events in mm Wave and/or Terahertz cellular systems, and more effectively satisfies the QoS requirements of 5G applications.