The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 18, 2023
Filed:
Jul. 08, 2022
Liaoning University, Shenyang, CN;
Yishan Pan, Shenyang, CN;
Linlin Ding, Shenyang, CN;
Lujie Cao, Shenyang, CN;
Hanlin Zhang, Shenyang, CN;
Hao Luo, Shenyang, CN;
LIAONING UNIVERSITY, Shenyang, CN;
Abstract
Embodiments of the present disclosure provide a method and system for recognizing a mine microseismic event, and belong to the field of mine data processing. The method includes: converting historical microseismic data monitored by a mine microseismic monitoring system into a microseismic waveform image, and then, converting the microseismic waveform image into a four-neighborhood microseismic waveform graph structure; performing area defining on the microseismic waveform graph structure, and extracting a similar feature layer of any node in the microseismic waveform graph structure based on the defined area; and taking the microseismic waveform image as an input layer of an improved convolutional neural network model, and sequentially connecting the input layer with the similar feature layer as well as a convolutional layer, a pooling layer, a fully connected layer and an output layer which are pre-configured for the improved convolutional neural network model to form a recognition model for recognizing the mine microseismic event. By using the recognition model designed in the present disclosure, the similar feature layer can be extracted, so that the mine microseismic event is effectively recognized.