The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 14, 2023
Filed:
Apr. 18, 2019
Sony Corporation, Tokyo, JP;
Sony Semiconductor Solutions Corporation, Kanagawa, JP;
Hiroshi Isobe, Kanagawa, JP;
Takaaki Tatsumi, Tokyo, JP;
SONY CORPORATION, Tokyo, JP;
SONY SEMICONDUCTOR SOLUTIONS CORPORATION, Kanagawa, JP;
Abstract
The present technique relates to an electrostatic protective element that enables protective performance with respect to static electricity to be improved and to an electronic device. An electrostatic protective element includes: a first impurity region of a first conductivity type which is formed on the predetermined surface side of a semiconductor substrate; a second impurity region of a second conductivity type which is formed on the predetermined surface side of the semiconductor substrate so as to form a clearance in a horizontal direction with respect to the first impurity region; a collector contact which is formed on the predetermined surface side in the first impurity region, which has a higher concentration than the first impurity region, and which is an impurity region of the first conductivity type; a base contact which is formed on the predetermined surface side in the second impurity region, which has a higher concentration than the second impurity region, and which is an impurity region of the second conductivity type; and an emitter contact which is formed on the predetermined surface side in the second impurity region at a position that is closer to the collector contact than the base contact, which has a higher concentration than the second impurity region, and which is an impurity region of the first conductivity type. The present technique can be applied to, for example, an electronic device.