The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 07, 2023
Filed:
Feb. 05, 2020
Exxonmobil Technology and Engineering Company, Annandale, NJ (US);
Kenneth W. Desmond, Nazareth, PA (US);
Gary L. Hunter, Stewartsville, NJ (US);
ExxonMobil Technology and Engineering Company, Annandale, NJ (US);
Abstract
Provided herein are improved methods for estimating the flow velocity of a fluid in a vessel. Systems and methods are provided herein related to making and/or refining velocity measurements for flowing fluids, both single and multi-phase fluids, in vessels, such as pipes or conduits, utilizing contrast media property agent variations. In one aspect, this disclosure provides a method of determining a flow velocity of a fluid flow in a vessel including: providing a fluid flow having contrast media, the contrast media having a contrast media property variation; providing a detectable signal corresponding to the contrast media property variation; collecting the detectable signal at an upstream receiver to produce a first received signal; collecting the detectable signal at a downstream receiver to produce a second received signal, the downstream receiver being located downstream of the upstream receiver at a distance (L); filtering the first received signal and the second received signal through a contrast media variant filter to produce a first filtered signal and a second filtered signal; cross-correlating the first filtered signal and the second filtered signal to determine a time shift (Δt) between the first filtered signal and the second filtered signal; and estimating the velocity of the fluid flow using this relationship vflow=L/Δt.