The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Dec. 06, 2022

Filed:

Aug. 16, 2019
Applicant:

Nippon Telegraph and Telephone Corporation, Tokyo, JP;

Inventors:

Atsushi Nakamura, Musashino, JP;

Keiji Okamoto, Musashino, JP;

Tetsuya Manabe, Musashino, JP;

Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01M 11/00 (2006.01);
U.S. Cl.
CPC ...
G01M 11/319 (2013.01);
Abstract

An object of the present invention is to provide a Raman gain efficiency distribution testing method and a Raman gain efficiency distribution testing apparatus for measuring a Raman gain efficiency distribution of a fundamental mode and a first high-order mode in a few-mode fiber. The Raman gain efficiency distribution testing method and the Raman gain efficiency distribution testing apparatus according to the present invention compute a Raman gain coefficient of a tested optical fiber from a Raman gain coefficient of a pure quartz core optical fiber at an excitation wavelength of 1 μm, a wavelength of excitation light, and a relative refractive index difference between a core and a clad at an arbitrary position z, compute electric field distribution overlap integrals at an arbitrary position z, between modes, of a mode field diameter of each mode at a wavelength of signal light, and a mode field diameter of each mode at a wavelength of excitation light; and compute the product of the Raman gain coefficient and the electric field distribution overlap integrals, and acquire Raman gain efficiencies, between modes, of the signal light and the excitation light at the arbitrary position z.


Find Patent Forward Citations

Loading…