The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 20, 2022
Filed:
Apr. 28, 2020
Seoul National University R&db Foundation, Seoul, KR;
Center for Advanced Meta-materials, Daejeon, KR;
SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION, Seoul, KR;
CENTER FOR ADVANCED META-MATERIALS, Daejeon, KR;
Abstract
An exemplary embodiment of the present invention provides an anisotropic medium for full transmission of obliquely incident elastic waves considering a longitudinal wave and a shear wave by using an anisotropic medium designed to fully transmit elastic waves in a desired mode when elastic waves are obliquely incident to a boundary of different media. The anisotropic medium for fully transmitting an obliquely incident elastic wave according to an exemplary embodiment of the present invention includes: an incident medium to which an incident elastic wave including a longitudinal wave and a shear wave, and being obliquely incident with a predetermined incidence angle, is incident and reflected; a transmission medium to which a transmitting elastic wave including a longitudinal wave and a shear wave is transmitted; and an anisotropic medium, installed between the incident medium and the transmission medium, for blocking reflection of a predetermined reflecting elastic wave as a predetermined full transmission condition is satisfied, and fully transmitting a transmitting elastic wave in a predetermined type of full transmission, wherein the full transmission condition includes a phase matching condition based on a wavenumber relationship of an eigenmode in the anisotropic medium, and a polarization matching condition based on a relationship between a polarization vector and an amplitude of the eigenmode.