The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 19, 2022
Filed:
Oct. 25, 2017
Eiken Kagaku Kabushiki Kaisha, Tokyo, JP;
Satoru Michiyuki, Ohtawara, JP;
Hidetoshi Kanda, Tochigi, JP;
EIKEN KAGAKU KABUSHIKI KAISHA, Tokyo, JP;
Abstract
The present invention addresses the issue of providing a target base sequence detection method, etc., whereby a determination can be readily made regarding whether or not a target base sequence is present in a nucleic acid sample. A fluorescent-labeled detection probe and a competitive probe are added to a nucleic acid sample and caused to hybridize with the nucleic acid in the sample, the fluorescence intensity is measured while changing the temperature of the reaction sample, and first order differentiation is performed on a temperature-fluorescence intensity curve. The fluorescent-labeled detection probe and competitive probe base length, base sequence, and amount to be added to nucleic acid samples are determined such that the first order derivative curve for a control target reaction sample including a target base sequence has a peak but the first order derivative curve for a control non-target reaction sample including a non-target base sequence does not substantially have a peak, when: the fluorescent-labeled detection probe and the competitive probe are added to both the control target nucleic acid sample and the control non-target nucleic acid sample; the fluorescence intensity is measured while the temperature of both the obtained control target reaction sample and the control non-target reaction sample are changed; and first order differentiation is performed on a temperature-fluorescence intensity curve.