The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 07, 2022
Filed:
Jul. 30, 2018
Suzhou University of Science and Technology, Jiangsu, CN;
Zhigang Chen, Jiangsu, CN;
Feng Chen, Jiangsu, CN;
Junchao Qian, Jiangsu, CN;
Chengbao Liu, Jiangsu, CN;
Chencheng Wang, Jiangsu, CN;
Suzhou University Of Science And Technology, Jiangsu, CN;
Abstract
The present invention provides a preparation method of a photocatalytic composite material, and relates to the field of catalyst technologies. The preparation method provided in the present invention includes the following steps: (1) subjecting plant leaves to soaking pretreatment to obtain template biomass; (2) mixing a molybdenum source-sulfur source aqueous solution with the template biomass obtained in step (1) and conducting impregnation to obtain a composite material precursor; and (3) calcining the composite material precursor obtained in step (2) to obtain the photocatalytic composite material. The photocatalytic composite material in the present invention includes acicular molybdenum sulfide and biomass carbon, the acicular molybdenum sulfide is loaded to a surface of the flake carbon, the mass content of the biomass carbon is 70% to 90%, and the mass content of the molybdenum sulfide is 10% to 30%. Performance of photocatalytic hydrogen production of the photocatalytic composite material in the present invention is better than that of a pure molybdenum sulfide material and has excellent photocorrosion resistance, and hydrogen production efficiency is reduced by only approximately 10% after three cycles.