The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
May. 03, 2022

Filed:

Mar. 21, 2019
Applicant:

Enlitic, Inc., San Francisco, CA (US);

Inventors:

Li Yao, San Francisco, CA (US);

Jordan Prosky, San Francisco, CA (US);

Eric C. Poblenz, Palo Alto, CA (US);

Kevin Lyman, Fords, NJ (US);

Ben Covington, Berkeley, CA (US);

Anthony Upton, Malvern, AU;

Assignee:

Enlitic, Inc., San Francisco, CA (US);

Attorneys:
Primary Examiner:
Assistant Examiner:
Int. Cl.
CPC ...
G06Q 20/14 (2012.01); G16H 40/20 (2018.01); G06F 3/0484 (2022.01); G16H 10/20 (2018.01); G06F 16/245 (2019.01); G06T 7/44 (2017.01); H04L 67/12 (2022.01); G06V 10/22 (2022.01); G16H 50/70 (2018.01); G06T 7/70 (2017.01); G16H 50/30 (2018.01); A61B 5/055 (2006.01); A61B 6/03 (2006.01); A61B 8/00 (2006.01); A61B 6/00 (2006.01); G06Q 50/22 (2018.01); G16H 10/60 (2018.01); H04L 67/01 (2022.01); G16H 30/40 (2018.01); G16H 15/00 (2018.01); G06K 9/62 (2022.01); G06T 5/00 (2006.01); G06T 5/50 (2006.01); G06T 7/00 (2017.01); G06T 11/00 (2006.01); G06N 5/04 (2006.01); G16H 30/20 (2018.01); G06N 20/00 (2019.01); G06F 9/54 (2006.01); G06T 7/187 (2017.01); G06T 7/11 (2017.01); G06F 3/0482 (2013.01); G06T 3/40 (2006.01); A61B 5/00 (2006.01); G16H 50/20 (2018.01); G06F 21/62 (2013.01); G06Q 10/06 (2012.01); G06T 7/10 (2017.01); G06T 11/20 (2006.01); G06N 20/20 (2019.01); G06F 40/295 (2020.01); G06V 30/194 (2022.01);
U.S. Cl.
CPC ...
G16H 10/60 (2018.01); A61B 5/7264 (2013.01); G06F 3/0482 (2013.01); G06F 3/0484 (2013.01); G06F 9/542 (2013.01); G06F 16/245 (2019.01); G06F 21/6254 (2013.01); G06K 9/6231 (2013.01); G06K 9/6254 (2013.01); G06K 9/6256 (2013.01); G06K 9/6262 (2013.01); G06K 9/6277 (2013.01); G06N 5/04 (2013.01); G06N 5/045 (2013.01); G06N 20/00 (2019.01); G06N 20/20 (2019.01); G06Q 10/06315 (2013.01); G06Q 20/14 (2013.01); G06T 3/40 (2013.01); G06T 5/002 (2013.01); G06T 5/008 (2013.01); G06T 5/50 (2013.01); G06T 7/0012 (2013.01); G06T 7/0014 (2013.01); G06T 7/10 (2017.01); G06T 7/11 (2017.01); G06T 7/187 (2017.01); G06T 7/44 (2017.01); G06T 7/97 (2017.01); G06T 11/001 (2013.01); G06T 11/006 (2013.01); G06T 11/206 (2013.01); G06V 10/225 (2022.01); G16H 10/20 (2018.01); G16H 15/00 (2018.01); G16H 30/20 (2018.01); G16H 30/40 (2018.01); G16H 40/20 (2018.01); G16H 50/20 (2018.01); H04L 67/12 (2013.01); H04L 67/42 (2013.01); A61B 5/055 (2013.01); A61B 6/032 (2013.01); A61B 6/5217 (2013.01); A61B 8/4416 (2013.01); G06F 40/295 (2020.01); G06K 9/6229 (2013.01); G06K 9/6267 (2013.01); G06Q 50/22 (2013.01); G06T 7/70 (2017.01); G06T 2200/24 (2013.01); G06T 2207/10048 (2013.01); G06T 2207/10081 (2013.01); G06T 2207/10088 (2013.01); G06T 2207/10116 (2013.01); G06T 2207/10132 (2013.01); G06T 2207/20076 (2013.01); G06T 2207/20081 (2013.01); G06T 2207/20084 (2013.01); G06T 2207/30004 (2013.01); G06T 2207/30008 (2013.01); G06T 2207/30016 (2013.01); G06T 2207/30061 (2013.01); G06V 30/194 (2022.01); G06V 2201/03 (2022.01); G16H 50/30 (2018.01); G16H 50/70 (2018.01);
Abstract

A contrast parameter learning system is operable to generate contrast significance data for a computer vision model, where the computer vision model was generated by performing a training step on a training set of medical scans. Significant contrast parameters are identified based on the contrast significance data. A re-contrasted training set is generated by performing an intensity transformation function that utilizes the significant contrast parameters on the training set of medical scans. A re-trained model is generated by performing the training step on the first re-contrasted training set. Re-contrasted image data of a new medical scan is generated by performing the intensity transformation function. Inference data is generated by performing an inference function that utilizes the first re-trained model on the re-contrasted image data. The inference data is transmitted via the transmitter to a client device for display via a display device.


Find Patent Forward Citations

Loading…