The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 08, 2022
Filed:
Apr. 04, 2018
Nederlandse Organisatie Voor Toegepast-natuurwetenschappelijk Onderzoek Tno, s-Gravenhage, NL;
Daniele Piras, Amsterdam, NL;
Paul Louis Maria Joseph van Neer, Bergschenhoek, NL;
Maarten Hubertus van Es, Voorschoten, NL;
Hamed Sadeghian Marnani, Nootdorp, NL;
Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO, 's-Gravenhage, NL;
Abstract
The document relates to a method of performing subsurface imaging of embedded structures underneath a substrate surface, using an atomic force microscopy system. The system comprises a probe with a probe tip, and a sensor for sensing a position of the probe tip. The method comprises the steps of: positioning the probe tip relative to the substrate: applying a first acoustic input signal to the substrate; applying a second acoustic input signal to the substrate; detecting an output signal from the substrate in response to the first and second acoustic input signal; and analyzing the output signal. The first acoustic input signal comprises a first signal component and a second signal component, the first signal component comprising a frequency below 250 megahertz and the second signal component either including a frequency below 2.5 megahertz or a frequency such as to provide a difference frequency of at most 2.5 megahertz with the first signal component, such as to enable analysis of an induced stress field in the substrate; and wherein the second acoustic input signal comprises a third signal component having a frequency above 1 gigahertz, such that the return signal includes a scattered fraction of the second acoustic input signal scattered from the embedded structures. This enables to perform imaging a various depths in one pass, across a large range of depths.