The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 15, 2022
Filed:
Dec. 14, 2017
Microsoft Technology Licensing, Llc, Redmond, WA (US);
Jilei Yang, Ningbo, CN;
Wei Di, Cupertino, CA (US);
Nidhi Sehgal, Fremont, CA (US);
Songtao Guo, Cupertino, CA (US);
Microsoft Technology Licensing, LLC, Redmond, WA (US);
Abstract
In an example, for each feature of one or more features of a target sample data, feature values for one or more pseudo-samples are generated using, localized stratified sampling. The one or more pseudo-samples are fed into the trained machine learned model to obtain their prediction values. A piecewise linear regression model is trained using the one or more pseudo-samples and their prediction values, the piecewise linear regression model having two coefficients for each feature, a first coefficient describing prediction change when a corresponding feature value is increased and a second coefficient describing prediction change when a corresponding feature value is decreased. A top positive feature influencer is identified based on a feature of the one or more features of the target sample having a greatest magnitude of positive first coefficient or greatest magnitude of negative second coefficient. A top negative feature influencer is identified based on a feature of the one or more features of the target sample having a greatest magnitude of negative first coefficient or greatest magnitude of positive second coefficient. A top feature contributor is identified based on a feature of the one or more features of the target sample having a greatest magnitude of a combination of second coefficient and feature value in the target sample data.