The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Feb. 01, 2022
Filed:
Jan. 15, 2016
Adobe Inc., San Jose, CA (US);
Hailin Jin, San Jose, CA (US);
Zhou Ren, Los Angeles, CA (US);
Zhe Lin, Fremont, CA (US);
Chen Fang, Santa Clara, CA (US);
Adobe Inc., San Jose, CA (US);
Abstract
Modeling semantic concepts in an embedding space as distributions is described. In the embedding space, both images and text labels are represented. The text labels describe semantic concepts that are exhibited in image content. In the embedding space, the semantic concepts described by the text labels are modeled as distributions. By using distributions, each semantic concept is modeled as a continuous cluster which can overlap other clusters that model other semantic concepts. For example, a distribution for the semantic concept 'apple' can overlap distributions for the semantic concepts 'fruit' and “tree” since can refer to both a fruit and a tree. In contrast to using distributions, conventionally configured visual-semantic embedding spaces represent a semantic concept as a single point. Thus, unlike these conventionally configured embedding spaces, the embedding spaces described herein are generated to model semantic concepts as distributions, such as Gaussian distributions, Gaussian mixtures, and so on.