The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 21, 2021
Filed:
Nov. 19, 2019
Google Llc, Mountain View, CA (US);
Google LLC, Mountain View, CA (US);
Abstract
A computer-implemented method for training a forward generator neural network G to translate a source image in a source domain X to a corresponding target image in a target domain Y is described. The method includes: obtaining a source training dataset sampled from the source domain X according to a source domain distribution, the source training dataset comprising a plurality of source training images; obtaining a target training dataset sampled from the target domain Y according to a target domain distribution, the target training dataset comprising a plurality of target training images; for each of the source training images in the source training dataset, translating, using the forward generator neural network G, each source training image to a respective translated target image in the target domain Y according to current values of forward generator parameters of the forward generator neural network G; for each of the target training images in the target training dataset, translating, using a backward generator neural network F, each target training image to a respective translated source image in the source domain X according to current values of backward generator parameters of the backward generator neural network F; and training the forward generator neural network G jointly with the backward generator neural network F by adjusting the current values of the forward generator parameters and the backward generator parameters to optimize an objective function, wherein the objective function comprises a harmonic loss component that ensures (i) similarity-consistency between patches in each source training image and patches in its corresponding translated target image, and (ii) similarity-consistency between patches in each target training image and patches in its corresponding translated source image.