The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 07, 2021
Filed:
Apr. 04, 2019
Central Iron and Steel Research Institute, Beijing, CN;
Anhua Li, Beijing, CN;
Haibo Feng, Beijing, CN;
Wei Li, Beijing, CN;
Longlong Xi, Beijing, CN;
Min Tan, Beijing, CN;
Yang Zhao, Beijing, CN;
CENTRAL IRON AND STEEL RESEARCH INSTITUTE, Beijing, CN;
Abstract
The present invention relates to a Ce-containing sintered rare earth permanent magnet with high toughness and high coercivity and a method of preparing the magnet, belonging to the technical field of rare earth permanent magnetic materials. The magnet is prepared by steps of raw material batching, strip casting, hydrogen decrepitation and jet milling, powder orientating and forming, sintering and heat treatment. The materials of the permanent magnet comprise the main phase alloy powders and the Ce added phase alloy powders, wherein the Ce added phase alloy is a magnetic phase or a non-magnetic liquid-phase alloy; and the Ce added phase alloy accounts for 5% to 30% of the total weight of the permanent magnet, and the remainder is the main phase alloy. During the jet milling stage, a certain concentration of oxygen is added into the inert gas, so that the final magnet has an oxygen content of 1500 to 2500 ppm. The Ce-containing dual-alloy magnet prepared in accordance with the present invention has high coercivity, and the intrinsic coercivity (H) is up to 17 to 28.73 kOe. The magnet of the present invention has good fracture toughness which is increased by 10% to 30% as compared with the conventional Nd—Fe—B sintered magnet. The magnet of the present invention can meet needs of high-end applications such as wind power generation, new energy vehicles, and the like, and greatly expands the application fields of Ce-containing magnets.