The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 23, 2021
Filed:
Dec. 24, 2018
Zhangjiagang Kangde Xin Optronics Material Co. Ltd, Zhangjiagang, CN;
Pieter Wilhelmus Theodorus De Jong, 's-Hertogenbosch, NL;
Jurjen Caarls, Eindhoven, NL;
Jan Van Der Horst, Eindhoven, NL;
ZHANGJIAGANG KANGDE XIN OPTRONICS MATERIAL CO. LTD, Zhangjiagang, CN;
Abstract
The invention relates to a method for reducing crosstalk on an autostereoscopic display, wherein the display comprises an array of pixels lined with a view altering layer, such as a lenticular lens stack or parallax barrier, which display further comprises an eye tracking system for determining the position of the eyes of a viewer relative to the display, which method comprises the steps of: —defining a common nonlinear physical model for a view altering layer portion corresponding to a pixel or group of pixels, which nonlinear physical model has at least one variable for the position of the respective pixel or group of pixels relative to the display, a variable for the viewing position of the eyes of a viewer relative to the display and parameters related to the variables; —calibrating the autostereoscopic display by repeating for all pixels or group of pixels of the display, the steps of: +obtaining calibration data by observing the visibility of a pixel or group of pixels from at least two viewing positions; +fitting the calibration data on the nonlinear physical model for the respective view altering layer portion to obtain the parameters related to the variables; and +storing the parameters for the respective view altering layer portion; —controlling the pixels of the autostereoscopic display to display 3D images, wherein the controlling comprises at least the steps of: +determining the viewing position of the eyes of a viewer using the eye tracking system; +rendering 3D images from image data taking into account the position of the pixels or group of pixels relative to the viewing position, while correcting the 3D images per pixel or group of pixels using the common nonlinear physical model and the stored parameters for the view altering layer portion corresponding to the pixel of group of pixels.