The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Sep. 21, 2021
Filed:
Dec. 31, 2018
Maryam Amirmazlaghani, Tehran, IR;
Sajjad Hosseinzadeh, Mashhad, IR;
Maryam Amirmazlaghani, Tehran, IR;
Sajjad Hosseinzadeh, Mashhad, IR;
Other;
AMIRKABIR UNIVERSITY OF TECHNOLOGY, Tehran, unknown;
Abstract
An improved system and method for detecting network anomalies comprises, in one implementation, a computer device and a network anomaly detector module executed by the computer device arranged to electronically sniff network traffic data in an aggregate level using a windowing approach. The windowing approach is configured to view the network traffic data through a plurality of time windows each of which represents a sequence of a feature including packet per second or flow per second. The network anomaly detector module is configured to execute a wavelet transform for capturing properties of the network traffic data, such as long-range dependence and self-similarity. The wavelet transform is a multiresolution transform, and can be configured to decompose and simplify statistics of the network traffic data into a simplified and fast algorithm. The network anomaly detector module is also configured to execute a bivariate Cauchy-Gaussian mixture (BCGM) statistical model for processing and modeling the network traffic data in the wavelet domain. The BCGM statistical model is an approximation of α-stable model, and offers a closed-form expression for probability density function to increase accuracy and analytical tractability, and to facilitate parameter estimations when compared to the α-stable model. Finally, the network anomaly detector module is further configured to execute a generalized likelihood ratio test for detecting the network anomalies.