The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 10, 2021
Filed:
Aug. 12, 2016
Bae Systems Information and Electronic Systems Integration Inc., Nashua, NH (US);
Denis Garagic, Wayland, MA (US);
Bradley J Rhodes, Reading, MA (US);
BAE Systems Information and Electronic Systems Integration Inc., Nashua, NH (US);
Abstract
A generic online, probabilistic, approximate computational inference model for learning-based data processing is presented. The model includes detection, feature production and classification steps. It employs Bayesian Probabilistic Models (BPMs) to characterize complex real-world behaviors under uncertainty. The BPM learning is incremental. Online learning enables BPM adaptation to new data. The available data drives BPM complexity (e.g., number of states) accommodating spatial and temporal ambiguities, occlusions, environmental clutter, and large inter-domain data variability. Generic Sequential Bayesian Inference (GSBI) efficiently operates over BPMs to process streaming or forensic data. Deep Belief Networks (DBNs) learn feature representations from data. Examples include model applications for streaming imagery (e.g., video) and automatic target recognition (ATR).