The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 27, 2021
Filed:
Jan. 10, 2020
Stradvision, Inc., Pohang-si, KR;
Kye-Hyeon Kim, Seoul, KR;
Yongjoong Kim, Pohang-si, KR;
Hak-Kyoung Kim, Pohang-si, KR;
Woonhyun Nam, Pohang-si, KR;
SukHoon Boo, Anyang-si, KR;
Myungchul Sung, Pohang-si, KR;
Dongsoo Shin, Suwon-si, KR;
Donghun Yeo, Pohang-si, KR;
Wooju Ryu, Pohang-si, KR;
Myeong-Chun Lee, Pohang-si, KR;
Hyungsoo Lee, Seoul, KR;
Taewoong Jang, Seoul, KR;
Kyungjoong Jeong, Pohang-si, KR;
Hongmo Je, Pohang-si, KR;
Hojin Cho, Pohang-si, KR;
Stradvision, Inc., Pohang-si, KR;
Abstract
A learning method for acquiring at least one personalized reward function, used for performing a Reinforcement Learning (RL) algorithm, corresponding to a personalized optimal policy for a subject driver is provided. And the method includes steps of: (a) a learning device performing a process of instructing an adjustment reward network to generate first adjustment rewards, by referring to the information on actual actions and actual circumstance vectors in driving trajectories, a process of instructing a common reward module to generate first common rewards by referring to the actual actions and the actual circumstance vectors, and a process of instructing an estimation network to generate actual prospective values by referring to the actual circumstance vectors; and (b) the learning device instructing a first loss layer to generate an adjustment reward and to perform backpropagation to learn parameters of the adjustment reward network.