The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jul. 13, 2021
Filed:
Jun. 07, 2018
Panasonic Intellectual Property Management Co., Ltd., Osaka, JP;
Youichi Kageyama, Fukushima, JP;
Kazuo Takenaka, Fukushima, JP;
Yugo Setsu, Fukushima, JP;
Hisao Hiragi, Saitama, JP;
Katsunori Atago, Fukushima, JP;
Takashi Higashide, Fukushima, JP;
Abstract
An in-vehicle power supply device according to the present disclosure includes an input terminal, a charge-discharge circuit connected to the input terminal, a first output terminal connected to the charge-discharge circuit via a first switch unit and a first cut-off unit, a second output terminal connected to the charge-discharge circuit via a second switch unit and a second cut-off unit, and a controller connected to the input terminal, the first output terminal, and the second output terminal. The controller controls the charge-discharge circuit, the first switch unit, the first cut-off unit, the second switch unit, and the second cut-off unit. When the controller detects that a voltage of the first output terminal becomes lower than the first load threshold voltage, the first cut-off unit changes from a connected state to a cut-off state. After a lapse of a first predetermined period following a time at which the controller detects that the voltage of the first output terminal is lower than the first load threshold voltage, the second switch unit switches from a state of higher-resistance conduction to a state of lower-resistance conduction in which a resistance level is lower than the resistance level in the state of higher-resistance conduction.