The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 22, 2021
Filed:
Nov. 22, 2019
Icp Technology Co., Ltd., Taoyuan, TW;
Sentec E&e Co., Ltd., Taoyuan, TW;
Ho-Chieh Yu, Taoyuan, TW;
Chen-Cheng-Lung Liao, Taoyuan, TW;
Chun-Yu Lin, Taoyuan, TW;
Jason An Cheng Huang, Taoyuan, TW;
ICP Technology Co., Ltd., Taoyuan, TW;
Sentec E&E Co., Ltd., Taoyuan, TW;
Abstract
A motor control device with built-in shunt resistor and power transistor is disclosed, comprising a high-thermally conductive substrate; an electrically conductive circuit which is thermo-conductively installed on the high-thermally conductive substrate and includes a first thermal connection pad portion and a second thermal connection pad portion mutually spaced apart; a high power transistor conductively connected to the electrical conducive circuit; and a shunt resistor conductively connected to the high power transistor, respectively including a body whose thermal expansion coefficient is greater than that of the high-thermally conductive substrate, as well as a pair of welding portions extending from the body, in which the body has a prescribed width, and the width of the welding portion is greater than the prescribed width, and the body and the high-thermally conductive substrate are spaced apart such that, upon welding the welding portion to the first thermal connection pad portion and the second thermal connection pad portion, the thermal expansion stress occurring between the body and the high-thermally conductive substrate can be distributed and undertaken in the width direction.