The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
May. 04, 2021
Filed:
Sep. 01, 2020
Furukawa Electric Co., Ltd., Tokyo, JP;
Yosuke Watanabe, Tokyo, JP;
Kenya Kawabata, Tokyo, JP;
Yoshikatsu Inagaki, Tokyo, JP;
Tatsuro Miura, Tokyo, JP;
Kazuaki Aotani, Tokyo, JP;
Toshiaki Nakamura, Tokyo, JP;
FURUKAWA ELECTRIC CO., LTD., Tokyo, JP;
Abstract
The present disclosure provides a heatsink that can increase a fin area of a heat radiating fin while securing sufficient volumes of a heat receiving portion, heat insulating portion, and heat radiating portion even in an environment in which an installation space for the heatsink, more specifically, an installation space in a height direction of the heatsink is limited. A heatsink including: a heat transport member having a heat receiving portion thermally connected to a heating element; a pipe body connected to a heat radiating portion of the heat transport member; and a heat radiating fin group which is thermally connected to the pipe body and in which a plurality of heat radiating fins is arranged, wherein the heat transport member has an integral internal space that communicates from the heat receiving portion to a connection portion with the pipe body and that is filled with a working fluid, the internal space of the heat transport member communicating with an internal space of the pipe body, and a cross-sectional area of an internal space in a direction orthogonal to a heat transport direction of the heat transport member in the heat radiating portion is smaller than the cross-sectional area in a heat insulating portion between the heat receiving portion and the heat radiating portion.