The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Mar. 16, 2021
Filed:
Aug. 11, 2017
Micromass Uk Limited, Wilmslow, GB;
Leco Corporation, St. Joseph, MI (US);
Anatoly Verenchikov, Wilmslow, GB;
Mikhail Yavor, St. Petersburg, RU;
Micromass UK Limited, Wilmslow, GB;
Abstract
A time-of-flight or electrostatic trap mass analyzer is disclosed comprising: an ion flight region comprising a plurality of ion-optical elements (-) for guiding ions through the flight region in a deflection (x-y) plane. The ion-optical elements are arranged so as to define a plurality of identical ion-optical cells, wherein the ion-optical elements in each ion-optical cell are arranged and configured so as to generate electric fields for either focusing ions travelling in parallel at an ion entrance location of the cell to a point at an ion exit location of the cell, or for focusing ions diverging from a point at the ion entrance location to travel parallel at the ion exit location. Each ion-optical cell comprises a plurality of electrostatic sectors having different deflection radii for bending the flight path of the ions in the deflection (x-y) plane. The ion-optical elements in each cell are configured to generate electric fields that either (i) have mirror symmetry in the deflection plane about a line in the deflection plane that is perpendicular to a mean ion path through the cell at a point half way along the mean ion path through the cell, or (ii) have point symmetry in the deflection plane about a point in the deflection plane that is half way along the mean ion path through the cell. The ion-optical elements are arranged and configured such that, in the frame of reference of the ions, the ions are guided through the deflection plane in the ion-optical cells along mean flight paths that are of the same shape and length in each ion-optical cell.